Primitive Lucas d-pseudoprimes and Carmichael–Lucas numbers
نویسندگان
چکیده
منابع مشابه
The Distribution of Lucas and Elliptic Pseudoprimes
Let ¿?(x) denote the counting function for Lucas pseudoprimes, and 2?(x) denote the elliptic pseudoprime counting function. We prove that, for large x , 5?(x) < xL(x)~l/2 and W(x) < xL(x)~l/3 , where L(x) = exp(logxlogloglogx/log logx).
متن کاملCarmichael numbers and pseudoprimes
We now establish a pleasantly simple description of Carmichael numbers, due to Korselt. First, we need the following notion. Let a and p be coprime (usually, p will be prime, but this is not essential). The order of a modulo p, denoted by ordp(a), is the smallest positive integer m such that a ≡ 1 mod p. Recall [NT4.5]: If ordp(a) = m and r is any integer such that a ≡ 1 mod p, then r is a mult...
متن کاملExistence of Primitive Divisors of Lucas and Lehmer Numbers
We prove that for n > 30, every n-th Lucas and Lehmer number has a primitive divisor. This allows us to list all Lucas and Lehmer numbers without a primitive divisor. Whether the mathematicians like it or not, the computer is here to stay. Folklore Whether the computer likes it or not, mathematics is here to stay. Beno Eckmann 32], p. xxiii Contents 1 Introduction 1 2 Cyclotomic criterion and n...
متن کاملThe Rabin-Monier theorem for Lucas pseudoprimes
We give bounds on the number of pairs (P,Q) with 0 ≤ P,Q < n such that a composite number n is a strong Lucas pseudoprime with respect to the parameters (P,Q).
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Colloquium Mathematicum
سال: 2007
ISSN: 0010-1354,1730-6302
DOI: 10.4064/cm108-1-7